Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Vsévolod Mymrin

Vsévolod Mymrin

Paraná Federal University of Technology,Brazil

Title: Hazardous industrial wastes treatment for production of environment friendly materials

Biography

Biography: Vsévolod Mymrin

Abstract

This paper reports on recycling mixed industrial wastes (exhaust metallurgical dust, spent foundry sands, galvanic glass microspheres waste, and acid inertization salt) into environmentally friendly composite ceramic materials. The only natural component of the developed compositions was clay and sand mixture, which is a traditional raw material of local brick factories. All industrial wastes under study had high contents of heavy metals, such as Pb, Br, Sr and Cr. The main goal of this research was development of eco-friendly construction materials based on these hazardous industrial wastes to reduce wastes disposal at dumps that chemically contaminate the environment. This would prolong service life of industrial landfills and essentially reduce exploitation of natural raw materials. Samples containing 75-85% of industrial wastes fabricated at 950-1,010°C had flexural strength values of up to 14 MPa. Physicochemical processes of the ceramics structure formation, studied by the complex of XRD, DTA, TG, SEM, EDS, mapping and LAMMA analyses, proved that during calcination of the initial mixtures disappeared some minerals - Magnetite Fe3O4, Illite KAl2(Si3Al)O10(OH)2 and Halite NaCl; remained unchanged Quartz SiO2,Cristobalite SiO2, Thenardite Na2SO4 and Hematite Fe2O3; newly formed were only two minerals - Andesine (Na,Ca)Al(Si,Al)3O8, and Diopside CaMg(Si2O6). The values of leaching and solubility of the heavy metals, studied by AAS method, demonstrate their hundreds of times less numbers than those permitted by the national standards of Brazil. They were strongly neutralized by predominated quantity of glassy amorphous new formations.